Temporal and spatial changes in grassland transpiration detected using Landsat TM and ETM+ imagery
نویسندگان
چکیده
The water deficit index (WDI) derived from Landsat imagery was used to detect temporal and spatial changes in grassland transpiration. The WDI, which estimates relative evapotranspiration rates based on meteorological data and the relation between surface reflectance and temperature, has been successfully applied over heterogeneous terrain with little a priori information. In this study, WDI was derived from a 10-year, Landsat-4 thematic mapper (TM), Landsat-5 TM, and Landsat-7 enhanced thematic mapper plus (ETM+) data series of the Walnut Gulch Experimental Watershed in Arizona during the summer monsoon period. Our study showed that measurements of surface reflectance and temperature from the three sensors could be combined without sacrificing product accuracy. WDI was correlated (R2 = 0.73) with grassland transpiration measured by in situ instruments. Further, WDI varied temporally and spatially with variations in plant transpiration related to antecedent rainfall and slope aspect. WDI was compared with a measure of plant-available soil moisture (the antecedent retention index, ARI), which was derived from an hourly record of precipitation and runoff, obtained from rain gauges and flumes located in the watershed. Results showed that a nonlinear relation between WDI and ARI was significant but weak (R2 = 0.45) and implied that WDI was the more sensitive indicator of vegetation condition. Ultimately, the WDI approach may be used as a viable tool to monitor grassland condition over heterogeneous regions. Résumé. L’indice WDI (water deficit index) dérivé des images Landsat a été utilizé pour détecter les changements temporels et spatiaux de la transpiration dans les prairies. Le WDI, qui estime le taux d’évapotranspiration relative à partir des données météorologiques et de la relation entre la réflectance de surface et la température, a été appliqué avec succès au-dessus de reliefs hétérogènes avec peu d’informations a priori. Dans cette étude, le WDI a été dérivé d’une série de données TM (thematic mapper) de Landsat-4 et Landsat-5 et ETM+ de Landsat-7 acquises sur une période de dix ans audessus du bassin versant expérimental de Walnut Gulch (Walnut Gulch Experimental Watershed), en Arizona, durant la période de mousson d’été. Notre étude a démontré que les mesures de réflectance de surface et de température dérivées des trois capteurs pouvaient être combinées sans sacrifier la précision du produit. Le WDI était corrélé (R2 = 0,73) avec la transpiration dans les prairies mesurée au moyen d’instruments in situ. De plus, le WDI variait temporellement et spatialement suivant les variations de la transpiration des plantes reliées à des précipitations antérieures ou au degré de pente. Le WDI a été comparé à une mesure de l’humidité du sol disponible à la plante (l’index ARI, antecedent retention index) dérivée d’enregistrements horaires de précipitation et de ruissellement acquis au moyen de pluviomètres et de canaux jaugeurs situés dans le bassin versant. Les résultats ont démontré qu’il existait une relation non-linéaire significative mais faible (R2 = 0,45) entre le WDI et le ARI laissant supposer que le WDI constitue un indicateur plus sensible de la condition de la végétation. Éventuellement, l’approche WDI pourrait être utilizée comme outil viable pour le suivi des conditions des prairies dans des régions hétérogènes. [Traduit par la Rédaction]
منابع مشابه
Feasibility and Accuracy of Modis 250m Imagery for Forest Disturbance Monitoring
Landsat Enhanced Thematic Mapper Plus (ETM+) images were compared to Terra-MODIS imagery for detecting forest changes in northern Maine’s industrial forest. Advantages of MODIS imagery compared to medium spatial resolution imagery, like Landsat TM or ETM+, are its temporal frequency, its low data volume to cover large forest regions and, the data are free to download over the Internet. The obje...
متن کاملبارزسازی فرایند رسوبگذاری در سامانههای پخش سیلاب با استفاده از دادههای تصاویر ماهوارهای LANDSAT، سنجندههای TM و ETM+
Of the applications of remote sensing and satellite images in natural resources is distinguishing and detection of changes in land surface. The image classification using Maximum Likelihood (MLC) is one the prevalent method which is used in a study of the application of TM and ETM+ satellite images to detect sediment deposition on an implemented floodwater spreading scheme. In order to implemen...
متن کاملAssessing Geomorphologic Changes of the Mehran River Delta using Remote Sensing and GIS (Bandar Lenga, Hormozgan Province)
Delta areas are dynamic features with changes occurring at many spatial and temporal scales due to catastrophic events. Change detection and providing a fluvial map of changes are the main requirements for environmental and zonal planners in many studies. Geomorphic changes such as temporal and periodic changes in riverbeds are common events in all delta areas. The Mehran river delta is located...
متن کاملبارزسازی فرایند رسوبگذاری در سامانههای پخش سیلاب با استفاده از دادههای تصاویر ماهوارهای LANDSAT، سنجندههای TM و ETM+
Of the applications of remote sensing and satellite images in natural resources is distinguishing and detection of changes in land surface. The image classification using Maximum Likelihood (MLC) is one the prevalent method which is used in a study of the application of TM and ETM+ satellite images to detect sediment deposition on an implemented floodwater spreading scheme. In order to implemen...
متن کاملRevealing the impact of changing land use of the annual spatiotemporal boundary layer height (Kermanshah Case Study)
Introduction Atmospheric boundary layer (ABL), is the lowest part of the atmosphere. Its behavior is directly influenced by its contact with earth surface. On earth it usually responds to changes in surface radiative forcing in an hour or less. In this layer physical quantities such as flow velocity, temperature, moisture, etc., display rapid fluctuations (turbulence) and vertical mixing is st...
متن کامل